Flavor singlet phenomena in lattice QCD
Abstract
Flavor singlet combinations of quark operators ${\cal{O}}_S^{\Gamma} = \bar{u}\Gamma u + \bar{d}\Gamma d + \bar{s}\Gamma s$ contribute to many important physical observables in the low energy region of QCD. Experimentally one finds the values of some of these observables to be in sharp contrast to the naive (perturbative) theoretical expectations. This indicates that non perturbative vacuum properties might play a major role in the comprehension of these phenomena. An example of such a vacuum contribution is the axial anomaly, which appears in the divergence of the flavor singlet axial current and which is connected to the topological properties of QCD. From a field theoretical point of view flavor singlet matrix elements differ from non singlet amplitudes in the occurrence of so called disconnected insertions. These are correlations of hadron propagators with quark-antiquark loops or correlations between quark-antiquark loops, which are mediated by vacuum fluctuations. According to their respective flavor composition, the disconnected insertions cancel largely in non singlet processes, but add in flavor singlet amplitudes. The lattice approach provides an ideal tool to study flavor singlet phenomena. Being a first principle method it should be capable to uncover non perturbative vacuum contributions and to yield, on the long run, reliable results for the size of such contributions in QCD. The present article reviews the status of flavor singlet matrix element calculations in lattice QCD with respect to methods, results and reliability. Special emphasis is paid to the discussion of state of the art calculations of the pion nucleon sigma term $\sigma_{\pi N}$, the flavor singlet axial coupling of the proton $G_A^1$, and the $\eta'$ mass.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 1999
- DOI:
- arXiv:
- arXiv:hep-lat/9906034
- Bibcode:
- 1999hep.lat...6034G
- Keywords:
-
- High Energy Physics - Lattice
- E-Print:
- 73 pages, 29 eps figures