Abstract
The existence of a topological double-covering for the GL(n, R) and diffeomorphism groups is reviewed. These groups do not have finite-dimensional faithful representations. An explicit construction and the classification of all\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\overline {SL} $$ \end{document}(n, R), n=3,4 unitary irreducible representations is presented. Infinite-component spinorial and tensorial\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\overline {SL} $$ \end{document} fields, "manifields", are introduced. Particle content of the ladder manifields, as given by the\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\overline {SL} $$ \end{document}(3, R) "little" group, is determined. The manifields are lifted to the corresponding world spinorial and tensorial manifields by making use of generalized infinite-component frame fields. World manifields transform w.r.t. corresponding\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\overline {Diff} $$ \end{document} representations, which are constructed explicitly.