New first-order formulation for the Einstein equations
Abstract
We derive a new first-order formulation for Einstein’s equations which involves fewer unknowns than other first-order formulations that have been proposed. The new formulation is based on the 3+1 decomposition with arbitrary lapse and shift. In the reduction to first-order form only eight particular combinations of the 18 first derivatives of the spatial metric are introduced. In the case of linearization about Minkowski space, the new formulation consists of a symmetric hyperbolic system in 14 unknowns, namely, the components of the extrinsic curvature perturbation and the eight new variables, from whose solution the metric perturbation can be computed by integration.
- Publication:
-
Physical Review D
- Pub Date:
- September 2003
- DOI:
- arXiv:
- arXiv:gr-qc/0210071
- Bibcode:
- 2003PhRvD..68f4013A
- Keywords:
-
- 04.20.Ex;
- 04.25.Dm;
- Initial value problem existence and uniqueness of solutions;
- Numerical relativity;
- General Relativity and Quantum Cosmology
- E-Print:
- 6 pages