Existence results for mean field equations
Abstract
Let $\Omega$ be an annulus. We prove that the mean field equation $-\Delta\psi=\frac{e\sp{-\beta\psi}}{\int\sb{\Omega}e\sp{-\beta\psi}} $ admits a solution with zero boundary for $\beta\in (-16\pi,-8\pi)$. This is a supercritical case for the Moser-Trudinger inequality.
- Publication:
-
eprint arXiv:dg-ga/9710023
- Pub Date:
- October 1997
- DOI:
- 10.48550/arXiv.dg-ga/9710023
- arXiv:
- arXiv:dg-ga/9710023
- Bibcode:
- 1997dg.ga....10023D
- Keywords:
-
- Differential Geometry
- E-Print:
- Filling a gap in the argument and adding 2 referrences