The differential equation $\Delta u = 8\pi - 8\pi h\exp {u}$ on a compact Riemann surface
Abstract
Let $M$ be a compact Riemann surface, $h(x)$ a positive smooth function on $M$. In this paper, we consider the functional $$J(u)={1/2}\int \sb{M}|\bigtriangledown u|\sp 2 + 8\pi \int\sb{M}u -8\pi \log\int\sb{M}h\exp {u}$$. We give a sufficient condition under which $J$ achieves its minimum.
- Publication:
-
eprint arXiv:dg-ga/9710005
- Pub Date:
- October 1997
- DOI:
- arXiv:
- arXiv:dg-ga/9710005
- Bibcode:
- 1997dg.ga....10005D
- Keywords:
-
- Differential Geometry;
- Mathematics - Differential Geometry
- E-Print:
- 26 pages, Latex, to appear in Asian J. Math. 1(1997) No. 2