On the space complexity of one-pass compression
Abstract
We study how much memory one-pass compression algorithms need to compete with the best multi-pass algorithms. We call a one-pass algorithm an (f (n, \ell))-footprint compressor if, given $n$, $\ell$ and an $n$-ary string $S$, it stores $S$ in ((\rule{0ex}{2ex} O (H_\ell (S)) + o (\log n)) |S| + O (n^{\ell + 1} \log n)) bits -- where (H_\ell (S)) is the $\ell$th-order empirical entropy of $S$ -- while using at most (f (n, \ell)) bits of memory. We prove that, for any (\epsilon > 0) and some (f (n, \ell) \in O (n^{\ell + \epsilon} \log n)), there is an (f (n, \ell))-footprint compressor; on the other hand, there is no (f (n, \ell))-footprint compressor for (f (n, \ell) \in o (n^\ell \log n)).
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2006
- DOI:
- 10.48550/arXiv.cs/0611099
- arXiv:
- arXiv:cs/0611099
- Bibcode:
- 2006cs.......11099G
- Keywords:
-
- Computer Science - Information Theory;
- H.1.1