Verifying nondeterministic probabilistic channel systems against $\omega$-regular linear-time properties
Abstract
Lossy channel systems (LCSs) are systems of finite state automata that communicate via unreliable unbounded fifo channels. In order to circumvent the undecidability of model checking for nondeterministic LCSs, probabilistic models have been introduced, where it can be decided whether a linear-time property holds almost surely. However, such fully probabilistic systems are not a faithful model of nondeterministic protocols. We study a hybrid model for LCSs where losses of messages are seen as faults occurring with some given probability, and where the internal behavior of the system remains nondeterministic. Thus the semantics is in terms of infinite-state Markov decision processes. The purpose of this article is to discuss the decidability of linear-time properties formalized by formulas of linear temporal logic (LTL). Our focus is on the qualitative setting where one asks, e.g., whether a LTL-formula holds almost surely or with zero probability (in case the formula describes the bad behaviors). Surprisingly, it turns out that -- in contrast to finite-state Markov decision processes -- the satisfaction relation for LTL formulas depends on the chosen type of schedulers that resolve the nondeterminism. While all variants of the qualitative LTL model checking problem for the full class of history-dependent schedulers are undecidable, the same questions for finite-memory scheduler can be solved algorithmically. However, the restriction to reachability properties and special kinds of recurrent reachability properties yields decidable verification problems for the full class of schedulers, which -- for this restricted class of properties -- are as powerful as finite-memory schedulers, or even a subclass of them.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2005
- DOI:
- 10.48550/arXiv.cs/0511023
- arXiv:
- arXiv:cs/0511023
- Bibcode:
- 2005cs.......11023B
- Keywords:
-
- Computer Science - Logic in Computer Science
- E-Print:
- 39 pages