Worst-Case Optimal Tree Layout in External Memory
Abstract
Consider laying out a fixed-topology tree of N nodes into external memory with block size B so as to minimize the worst-case number of block memory transfers required to traverse a path from the root to a node of depth D. We prove that the optimal number of memory transfers is $$ \cases{ \displaystyle \Theta\left( {D \over \lg (1{+}B)} \right) & when $D = O(\lg N)$, \cr \displaystyle \Theta\left( {\lg N \over \lg \left(1{+}{B \lg N \over D}\right)} \right) & when $D = \Omega(\lg N)$ and $D = O(B \lg N)$, \cr \displaystyle \Theta\left( {D \over B} \right) & when $D = \Omega(B \lg N)$. } $$
- Publication:
-
arXiv e-prints
- Pub Date:
- October 2004
- DOI:
- 10.48550/arXiv.cs/0410048
- arXiv:
- arXiv:cs/0410048
- Bibcode:
- 2004cs.......10048D
- Keywords:
-
- Computer Science - Data Structures and Algorithms;
- F.2.2;
- E.1
- E-Print:
- 10 pages, 1 figure. To appear in Algorithmica