Exactly Solvable Scaling Theory of Conduction in Disordered Wires
Abstract
Recent developments in the scaling theory of phase-coherent conduction through a disordered wire are reviewed. The Dorokhov-Mello-Pereyra-Kumar equation for the distribution of transmission eigenvalues has been solved exactly, in the absence of time-reversal symmetry. Comparison with the previous prediction of random-matrix theory shows that this prediction was highly accurate but not exact: the repulsion of the smallest eigenvalues was overestimated by a factor of two. This factor of two resolves several disturbing discrepancies between random-matrix theory and microscopic calculations, notably in the magnitude of the universal conductance fluctuations in the metallic regime, and in the width of the log-normal conductance distribution in the insulating regime.
- Publication:
-
Modern Physics Letters B
- Pub Date:
- 1994
- DOI:
- 10.1142/S0217984994000509
- arXiv:
- arXiv:cond-mat/9403033
- Bibcode:
- 1994MPLB....8..469B
- Keywords:
-
- Condensed Matter
- E-Print:
- 9 pages, LATEX, INLO-PUB-940309a