Quantum computing with spins in solids
Abstract
The ability to perform high-precision one- and two-qubit operations is sufficient for universal quantum computation. For the Loss-DiVincenzo proposal to use single electron spins confned to quantum dots as qubits, it is therefore sufficient to analyze only single- and coupled double-dot structures, since the strong Heisenberg exchange coupling between spins in this proposal falls off exponentially with distance and long-ranged dipolar coupling mechanisms can be made significantly weaker. This scalability of the Loss-DiVincenzo design is both a practical necessity for eventual applications of multi-qubit quantum computing and a great conceptual advantage, making analysis of the relevant components relatively transparent and systematic. We review the Loss-DiVincenzo proposal for quantum-dot-confned electron spin qubits, and survey the current state of experiment and theory regarding the relevant single- and double- quantum dots, with a brief look at some related alternative schemes for quantum computing.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2006
- DOI:
- arXiv:
- arXiv:cond-mat/0606550
- Bibcode:
- 2006cond.mat..6550C
- Keywords:
-
- Condensed Matter - Mesoscopic Systems and Quantum Hall Effect
- E-Print:
- 39 pages, 7 figures, Contribution to the Handbook of Magnetism and Advanced Magnetic Materials, vol. 5, Wiley