Anisotropic simple-cubic Ising lattice: extended phenomenological renormalization-group treatment
Abstract
Using transfer-matrix extended phenomenological renormalization-group methods [M.A.Yurishchev, Nucl. Phys. B (Proc. Suppl.) 83-84, 727 (2000); hep-lat/9908019; J. Exp. Theor. Phys. 91, 332 (2000); cond-mat/0108002] the improved estimates for the critical temperature of spin-1/2 Ising model on a simple-cubic lattice with partly anisotropic coupling strengths ${\vec J}=(J',J',J)$ are obtained. Universality of both fundamental critical exponents $y_t$ and $y_h$ is confirmed. We show also that the critical finite-size scaling amplitude ratios $A_{\chi^{(4)}}A_\kappa/A_\chi^2$, $A_{\kappa^{''}}/A_\chi$, and $A_{\kappa^{(4)}}/A_{\chi^{(4)}}$ are independent of the lattice anisotropy parameter $\Delta=J'/J$.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2003
- DOI:
- 10.48550/arXiv.cond-mat/0312555
- arXiv:
- arXiv:cond-mat/0312555
- Bibcode:
- 2003cond.mat.12555Y
- Keywords:
-
- Condensed Matter - Statistical Mechanics
- E-Print:
- 11 pages, no figures