On the entropy of spanning trees on a large triangular lattice
Abstract
The double integral representing the entropy S_{tri} of spanning trees on a large triangular lattice is evaluated using two different methods, one algebraic and one graphical. Both methods lead to the same result S_{tri} = [1/(2 Pi)]^2 \int_0^{2 Pi} d\theta \int_0^{2 Pi} d\phi ln [6-2 cos(\theta) - 2 cos(\phi) -2 cos(\theta+\phi)] = [3(\sqrt 3)/Pi](1 - 5^{-2} + 7^{-2} - 11^{-2} + 13^{-2} - ...)
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2003
- DOI:
- arXiv:
- arXiv:cond-mat/0309198
- Bibcode:
- 2003cond.mat..9198G
- Keywords:
-
- Condensed Matter - Statistical Mechanics;
- Mathematics - Combinatorics
- E-Print:
- 16 pages, 3 figures, reference added, for Proceedings of the Gainesville Conference on Number Theory and Combinatorics in Physics, Ramanujan Journal