Statistical Mechanics of Two-Dimensional Vortices and Stellar Systems
Abstract
The formation of large-scale vortices is an intriguing phenomenon in two-dimensional turbulence. Such organization is observed in large-scale oceanic or atmospheric flows, and can be reproduced in laboratory experiments and numerical simulations. A general explanation of this organization was first proposed by Onsager (1949) by considering the statistical mechanics for a set of point vortices in two-dimensional hydrodynamics. Similarly, the structure and the organization of stellar systems (globular clusters, elliptical galaxies,...) in astrophysics can be understood by developing a statistical mechanics for a system of particles in gravitational interaction as initiated by Chandrasekhar (1942). These statistical mechanics turn out to be relatively similar and present the same difficulties due to the unshielded long-range nature of the interaction. This analogy concerns not only the equilibrium states, i.e. the formation of large-scale structures, but also the relaxation towards equilibrium and the statistics of fluctuations. We will discuss these analogies in detail and also point out the specificities of each system.
- Publication:
-
Dynamics and Thermodynamics of Systems with Long-Range Interactions
- Pub Date:
- 2002
- DOI:
- arXiv:
- arXiv:cond-mat/0212223
- Bibcode:
- 2002LNP...602..208C
- Keywords:
-
- Condensed Matter - Statistical Mechanics;
- Astrophysics
- E-Print:
- Chapter of the forthcoming "Lecture Notes in Physics" volume: ``Dynamics and Thermodynamics of Systems with Long Range Interactions'', T. Dauxois, S. Ruffo, E. Arimondo, M. Wilkens Eds., Lecture Notes in Physics Vol. 602, Springer (2002)