Modeling electricity loads in California: ARMA models with hyperbolic noise
Abstract
In this paper we address the issue of modeling and forecasting electricity loads. We apply a two-step procedure to a series of system-wide loads from the California power market. First, we remove the weekly and annual seasonalities. Then, after analyzing properties of the deseasonalized data we fit an autoregressive moving average model. The obtained residuals seem to be independent but with tails heavier than Gaussian. It turns out that the hyperbolic distribution provides an excellent fit. As a justification for our approach we supply out-of-sample forecasts. As it turns out, our method performs significantly better than the one used by the California System Operator.
- Publication:
-
Signal Processing
- Pub Date:
- January 2002
- DOI:
- 10.1016/S0165-1684(02)00318-3
- arXiv:
- arXiv:cond-mat/0107226
- Bibcode:
- 2002SigPr..82.1903N
- Keywords:
-
- Electricity load;
- ARMA model;
- Heavy tails;
- Hyperbolic distribution;
- Forecast;
- Condensed Matter - Statistical Mechanics
- E-Print:
- 11 pages, 6 figures