An introduction to breakdown phenomena in disordered systems
Abstract
The rupture of a medium under stress typifies breakdown phenomena. More generally, the latter encompass the dynamics of systems of many interacting elements governed by the interplay of a driving force with a pinning disorder, resulting in a macroscopic transition. A simple mean-field formalism incorporating these features is presented and applied to systems representative of fracture phenomena, social dilemmas, and magnets out of equilibrium. The similarities and differences in the corresponding mathematical structures are emphasized. The solutions are best obtained from a graphical method, from which very general conclusions may be drawn. In particular, the various classes of disorder distribution are treated without reference to a particular analytical or numerical form, and are found to lead to qualitatively different transitions. Finally, the notion of effective (or phenomenological) theory is introduced and illustrated for nonequilibrium disordered magnets.
- Publication:
-
American Journal of Physics
- Pub Date:
- December 1999
- DOI:
- 10.1119/1.19104
- arXiv:
- arXiv:cond-mat/0008174
- Bibcode:
- 1999AmJPh..67.1177D
- Keywords:
-
- 01.50.-i;
- 05.50.+q;
- 45.30.+s;
- Educational aids;
- Lattice theory and statistics;
- General linear dynamical systems;
- Condensed Matter - Statistical Mechanics;
- Condensed Matter - Disordered Systems and Neural Networks;
- Condensed Matter - Materials Science
- E-Print:
- Pedagogical article published as part of a special issue on thermodynamics and statistical physics