Random graphs with arbitrary degree distributions and their applications
Abstract
Recent work on the structure of social networks and the internet has focused attention on graphs with distributions of vertex degree that are significantly different from the Poisson degree distributions that have been widely studied in the past. In this paper we develop in detail the theory of random graphs with arbitrary degree distributions. In addition to simple undirected, unipartite graphs, we examine the properties of directed and bipartite graphs. Among other results, we derive exact expressions for the position of the phase transition at which a giant component first forms, the mean component size, the size of the giant component if there is one, the mean number of vertices a certain distance away from a randomly chosen vertex, and the average vertex-vertex distance within a graph. We apply our theory to some real-world graphs, including the world-wide web and collaboration graphs of scientists and Fortune 1000 company directors. We demonstrate that in some cases random graphs with appropriate distributions of vertex degree predict with surprising accuracy the behavior of the real world, while in others there is a measurable discrepancy between theory and reality, perhaps indicating the presence of additional social structure in the network that is not captured by the random graph.
- Publication:
-
Physical Review E
- Pub Date:
- August 2001
- DOI:
- arXiv:
- arXiv:cond-mat/0007235
- Bibcode:
- 2001PhRvE..64b6118N
- Keywords:
-
- 89.75.Hc;
- 87.23.Ge;
- 05.90.+m;
- Networks and genealogical trees;
- Dynamics of social systems;
- Other topics in statistical physics thermodynamics and nonlinear dynamical systems;
- Condensed Matter - Statistical Mechanics;
- Condensed Matter - Disordered Systems and Neural Networks
- E-Print:
- 19 pages, 11 figures, some new material added in this version along with minor updates and corrections