Quenched spin tunneling and diabolical points in magnetic molecules. I. Symmetric configurations
Abstract
The perfect quenching of spin tunneling that has previously been discussed in terms of interfering instantons, and has recently been observed in the magnetic molecule Fe8, is treated using a discrete phase integral (or Wentzel-Kramers-Brillouin) method. The simplest model Hamiltonian for the phenomenon leads to a Schrödinger equation that is a five-term recursion relation. This recursion relation is reflection symmetric when the magnetic field applied to the molecule is along the hard magnetic axis. A completely general Herring formula for the tunnel splittings for all reflection-symmetric five-term recursion relations is obtained. Using connection formulas for a nonclassical turning point that may be described as lying ``under the barrier,'' and which underlies the oscillations in the splitting as a function of magnetic field, this Herring formula is transformed into two other formulas that express the splittings in terms of a small number of action and actionlike integrals. These latter formulas appear to be generally valid, even for problems where the recursion contains more than five terms. The results for the model Hamiltonian are compared with experiment, numerics, previous instanton based approaches, and the limiting case of no magnetic field.
- Publication:
-
Physical Review B
- Pub Date:
- September 2001
- DOI:
- arXiv:
- arXiv:cond-mat/0003114
- Bibcode:
- 2001PhRvB..64i4413G
- Keywords:
-
- 75.10.Dg;
- 03.65.Sq;
- 75.50.Xx;
- 75.45.+j;
- Crystal-field theory and spin Hamiltonians;
- Semiclassical theories and applications;
- Molecular magnets;
- Macroscopic quantum phenomena in magnetic systems;
- Condensed Matter;
- Mathematical Physics;
- Quantum Physics
- E-Print:
- Revtex