Surface detonation in type Ia supernova explosions?
Abstract
We explore the evolution of thermonuclear supernova explosions when the progenitor white dwarf star ignites asymmetrically off-center. Several numerical simulations are carried out in two and three dimensions to test the consequences of different initial flame configurations such as spherical bubbles displaced from the center, more complex deformed configurations, and teardrop-shaped ignitions. The burning bubbles float towards the surface while releasing energy due to the nuclear reactions. If the energy release is too small to gravitationally unbind the star, the ash sweeps around it, once the burning bubble approaches the surface. Collisions in the fuel on the opposite side increase its temperature and density and may - in some cases - initiate a detonation wave which will then propagate inward burning the core of the star and leading to a strong explosion. However, for initial setups in two dimensions that seem realistic from pre-ignition evolution, as well as for all three-dimensional simulations the collimation of the surface material is found to be too weak to trigger a detonation.
- Publication:
-
Journal of Physics Conference Series
- Pub Date:
- September 2006
- DOI:
- arXiv:
- arXiv:astro-ph/0609691
- Bibcode:
- 2006JPhCS..46..413R
- Keywords:
-
- Astrophysics
- E-Print:
- 5 pages, 3 figures, in: Proceedings of the SciDAC 2006 Meeting, Denver June 25-26 2006, also available at http://herald.iop.org/jpcs46/m51/gbr//link/409