Testing the companion hypothesis for the origin of the X-ray emission from intermediate-mass main-sequence stars
Abstract
Context: .The X-ray emission from B-type main-sequence stars is a longstanding mystery in stellar coronal research. Since there is no theory at hand that explains intrinsic X-ray emission from intermediate-mass main-sequence stars, the observations have often been interpreted in terms of (unknown) late-type magnetically active companion stars.
Aims: .Resolving the hypothesized companions requires high spatial resolution observations in the infrared and in X-rays. We use Chandra imaging observations to spatially resolve a sample of main-sequence B-type stars with recently discovered companions at arcsecond separation.
Methods: .Our strategy is to search for X-ray emission at the position of both the B-type primary and the faint companion.
Results: .We find that all spatially resolved companions are X-ray emitters, but seven out of eleven intermediate-mass stars are also X-ray sources. If this emission is interpreted in terms of additional sub-arcsecond or spectroscopic companions, this implies a high multiplicity of B-type stars. Firm results on B star multiplicity pending, the alternative, that B stars produce intrinsic X-rays, cannot be discarded. An appropriate scenario would be a magnetically confined wind, as suggested for the X-ray emission of the magnetic Ap star IQ Aur. However, the only Ap star in the Chandra sample is not detected in X-rays, and therefore does not support this picture.
- Publication:
-
Astronomy and Astrophysics
- Pub Date:
- June 2006
- DOI:
- arXiv:
- arXiv:astro-ph/0602517
- Bibcode:
- 2006A&A...452.1001S
- Keywords:
-
- X-rays: stars;
- stars: early-type;
- stars: coronae;
- stars: activity;
- Astrophysics
- E-Print:
- 12 pages