Constraining Global Properties of the Draco Dwarf Spheroidal Galaxy
Abstract
By fitting a flexible stellar anisotropy model to the observed surface brightness and line-of-sight velocity dispersion profiles of Draco we derive a sequence of cosmologically plausible two-component (stars + dark matter) models for this galaxy. The models are consistent with all the available observations and can have either cuspy Navarro-Frenk-White or flat-cored dark matter density profiles. The dark matter halos either formed relatively recently (at z~2-7) and are massive (up to ~5×109 Msolar), or formed before the end of the reionization of the universe (z~7-11) and are less massive (down to ~7×107 Msolar). Our results thus support either of the two popular solutions of the ``missing satellites'' problem of Λ cold dark matter cosmology-that dwarf spheroidals are either very massive or very old. We carry out high-resolution simulations of the tidal evolution of our two-component Draco models in the potential of the Milky Way. The results of our simulations suggest that the observable properties of Draco have not been appreciably affected by the Galactic tides after 10 Gyr of evolution. We rule out Draco being a ``tidal dwarf''-a tidally disrupted dwarf galaxy. Almost radial Draco orbits (with the pericentric distance <~15 kpc) are also ruled out by our analysis. The case of a harmonic dark matter core can be consistent with observations only for a very limited choice of Draco orbits (with the apocentric-to-pericentric distances ratio of <~2.5).
- Publication:
-
The Astrophysical Journal
- Pub Date:
- March 2006
- DOI:
- arXiv:
- arXiv:astro-ph/0511567
- Bibcode:
- 2006ApJ...640..252M
- Keywords:
-
- Galaxies: Evolution;
- Galaxies: Individual: Name: Draco dwarf spheroidal;
- Stellar Dynamics;
- Astrophysics
- E-Print:
- 18 pages, 14 figures