Quasar host galaxy star formation activity from multicolour data
Abstract
We investigate multicolour imaging data of a complete sample of 19 low-redshift (z < 0.2) quasar host galaxies. The sample was imaged in four optical (BVRi) and three near-infrared bands (JHKs). Galaxy types, structural parameters and robust host galaxy luminosities are extracted for all bands by means of two-dimensional deblending of galaxy and nucleus. For the disc-dominated fraction of host galaxies (Sa and later) the optical and optical-to-near-infrared colours agree well with the average colours of inactive galaxies of the same type. The bulge-dominated galaxies (E/S0), on the other hand, appear a significant ~0.3 mag bluer in (V-K) than their inactive counterparts, being as blue as the discs in the sample. This trend is confirmed by fitting population synthesis models to the extracted broad-band spectral energy distributions: the stellar population age of the bulge-dominated hosts lies around a few Gyr, much younger than expected for old evolved ellipticals. Comparison to other studies suggests a strong trend for stellar age in elliptical host galaxies with luminosity. Intermediately luminous elliptical hosts have comparably young populations, either intrinsically or from an enhanced star formation rate potentially due to interaction; the most luminous and massive ellipticals on the contrary show old populations. The correspondence between the nuclear activity and the blue colours suggests a connection between galaxy interaction, induced star formation and the triggering of nuclear activity. However, the existence of very symmetric and undisturbed discs and elliptical host galaxies emphasized that other mechanisms like minor merging or gas accretion must exist.
- Publication:
-
Monthly Notices of the Royal Astronomical Society
- Pub Date:
- August 2004
- DOI:
- arXiv:
- arXiv:astro-ph/0311123
- Bibcode:
- 2004MNRAS.352..399J
- Keywords:
-
- galaxies: active;
- galaxies: fundamental parameters;
- galaxies: photometry;
- quasars: general;
- Astrophysics
- E-Print:
- 19 pages, 11 figures, submitted to MNRAS