The Aligned z~1 Radio Galaxy 3C 280
Abstract
The z~1 radio galaxy 3C 280 has a particularly striking rest-frame UV morphology, with multiple line and continuum components precisely aligned with the radio structure, including an obvious semicircular arc. Here we explore the nature of these various components by bringing together Hubble Space Telescope and ground-based imaging, ground-based spectroscopy, and radio mapping. From plausible decompositions of the spectra, we show that the continuum of the nuclear component is likely dominated by a combination of nebular thermal continuum, quasar light, and light from old stars. A component that falls directly on the probable path of the radio jet shows mostly nebular thermal continuum and includes contributions from a relatively young stellar population with age around 100 Myr. The arc appears to be completely dominated by line emission and nebular thermal continuum, with no evidence for a significant stellar contribution. Although much of the aligned light is in UV components, the underlying old elliptical galaxy is also well aligned with the radio axis. The elliptical galaxy is well fitted by a de Vaucouleurs profile, probably has a moderately old stellar population (~3 Gyr), and is a massive system with a velocity dispersion of σ~270 km s-1 that implies that it contains a supermassive black hole. Although the arc and the extended emission surrounding the eastern lobe suggest that interactions between the radio lobe and jet must have been important in creating the UV morphology, the ionization and kinematic properties in these components are more consistent with photoionization than shock excitation. 3C 280 may be a transition object between the compact steep-spectrum radio galaxies, which seem to be shock-dominated, and the extended radio sources, which may have evolved past this phase and rarely show shock signatures.
Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.- Publication:
-
The Astrophysical Journal
- Pub Date:
- January 2004
- DOI:
- arXiv:
- arXiv:astro-ph/0310103
- Bibcode:
- 2004ApJ...600...70R
- Keywords:
-
- Galaxies: Active;
- Galaxies: High-Redshift;
- Galaxies: Individual: Alphanumeric: 3C 280;
- Astrophysics
- E-Print:
- 43 pages, including 14 figures