Two-dimensional Topology of the Two-Degree Field Galaxy Redshift Survey
Abstract
We study the topology of the publicly available data released by the Two Degree Field Galaxy Redshift Survey team (2dF GRS). The 2dF GRS data contain over 100,000 galaxy redshifts with a magnitude limit of bJ=19.45 and is the largest such survey to date. The data lie over a wide range of right ascension (75° strips) but only within a narrow range of declination (10° and 15° strips). This allows measurements of the two-dimensional genus to be made. We find that the genus curves of the north Galactic pole (NGP) and south Galactic pole (SGP) are slightly different. The NGP displays a slight meatball shift topology, whereas the SGP displays a bubble-like topology. The current SGP data also have a slightly higher genus amplitude. In both cases, a slight excess of overdense regions is found over underdense regions. We assess the significance of these features using mock catalogs drawn from the Virgo Consortium's Hubble volume ΛCDM z=0 simulation. We find that differences between the NGP and SGP genus curves are only significant at the 1 σ level. The average genus curve of the 2dF GRS agrees well with that extracted from the ΛCDM mock catalogs. We also use the simulations to assess how the current incompleteness of the survey (the strips are not completely filled in) affects the measurement of the genus and find that we are not sensitive to the geometry; there are enough data in the current sample to trace the isolated high- and low-density regions. We compare the amplitude of the 2dF GRS genus curve to the amplitude of the genus curve of a Gaussian random field that we construct to have the same power spectrum as the 2dF GRS. In previous three-dimensional analyses, it was found that the genus curve of observed samples was lower than the Gaussian random field curve, presumably because of high-order correlations present in the data. However, we find that the 2dF GRS genus curve has an amplitude that is slightly higher than that of the power-spectrum-matched Gaussian random field. We suggest that in two dimensions the genus measurement is less sensitive to nonlinear effects because of the effective smoothing over the thickness of the slice.
- Publication:
-
The Astrophysical Journal
- Pub Date:
- May 2002
- DOI:
- arXiv:
- arXiv:astro-ph/0111546
- Bibcode:
- 2002ApJ...570...44H
- Keywords:
-
- Cosmology: Observations;
- Galaxies: Distances and Redshifts;
- Cosmology: Large-Scale Structure of Universe;
- Methods: Statistical;
- Astrophysics
- E-Print:
- Submitted to ApJ A version with Figure 1 in higher resolution can be obtained from http://www.physics.drexel.edu/~hoyle/