Merger histories in warm dark matter structure formation scenarios
Abstract
Observations on galactic scales seem to be in contradiction with recent high-resolution N-body simulations. This so-called cold dark matter (CDM) crisis has been addressed in several ways, ranging from a change in fundamental physics by introducing self-interacting cold dark matter particles to a tuning of complex astrophysical processes such as global and/or local feedback. All these efforts attempt to soften density profiles and reduce the abundance of satellites in simulated galaxy haloes. In this paper, we explore a different approach that consists of filtering the dark matter power spectrum on small scales, thereby altering the formation history of low-mass objects. The physical motivation for damping these fluctuations lies in the possibility that the dark matter particles have a different nature, i.e. are warm (WDM) rather than cold. We show that this leads to some interesting new results in terms of the merger history and large-scale distribution of low-mass haloes, compared with the standard CDM scenario. However, WDM does not appear to be the ultimate solution, in the sense that it is not able to fully solve the CDM crisis, even though one of the main drawbacks, namely the abundance of satellites, can be remedied. Indeed, the cuspiness of the halo profiles still persists, at all redshifts, and for all haloes and sub-haloes that we investigated. Despite the persistence of the cuspiness problem of DM haloes, WDM seems to be still worth taking seriously, as it alleviates the problems of over-abundant sub-structures in galactic haloes and possibly the lack of angular momentum of simulated disc galaxies. WDM also lessens the need to invoke strong feedback to solve these problems, and may provide a natural explanation of the clustering properties and ages of dwarfs.
- Publication:
-
Monthly Notices of the Royal Astronomical Society
- Pub Date:
- February 2002
- DOI:
- arXiv:
- arXiv:astro-ph/0105316
- Bibcode:
- 2002MNRAS.329..813K
- Keywords:
-
- COSMOLOGY: THEORY;
- LARGE-SCALE STRUCTURE OF UNIVERSE;
- Astrophysics
- E-Print:
- 11 pages, 17 figures, MNRAS submitted, high-res figures can be found at http://www-thphys.physics.ox.ac.uk/users/AlexanderKnebe/publications.html, replaced with accepted version (warmon masses corrected!)