Thermal stability of self-gravitating, optically thin accretion disks
Abstract
In the dynamics of accretion disks, the presence of collective effects associated with the self-gravity of the disk is expected to affect not only the momentum transport, but also the relevant energy balance equations, which could differ substantially from the non-self-gravitating case. Here we follow the model that, when the disk is sufficiently cold, the stirring due to Jeans-related instabilities acts as a source of effective heating. The corresponding reformulation of the energy equations allows us to: (i) demonstrate how self-regulation can be established, so that the stability parameter Q is maintained close to a threshold value, with weak dependence on radius; (ii) rediscuss the opacity properties in the self-gravitating regime. In particular, we show that, if cooling is dominated by bremsstrahlung, an optically thin stationary accretion solution is thermally stable, even in the non-advective case, provided the disk is self-gravitating. The details of the cooling function have little effect on the structure of such accretion disk, which is in any case induced by self-gravity to self-regulate. This condition of self-gravitating accretion is expected to be appropriate for the outer regions of many disks of astrophysical interest. With the reformulation of the energy equations described in this paper, we have also secured: (iii) a starting point for the study of the emission properties of self-gravitating accretion disks; (iv) a tool to analyze the structure of the transition region, where the disk becomes self-gravitating.
- Publication:
-
Astronomy and Astrophysics
- Pub Date:
- April 2001
- DOI:
- arXiv:
- arXiv:astro-ph/0102171
- Bibcode:
- 2001A&A...370..342B
- Keywords:
-
- ACCRETION;
- ACCRETION DISKS;
- GRAVITATION;
- HYDRODYNAMICS;
- INSTABILITIES;
- Astrophysics
- E-Print:
- 9 pages, 5 figures, accepted by A&