Everyone's Privacy Matters! An Analysis of Privacy Leakage from Real-World Facial Images on Twitter and Associated User Behaviors
Abstract
Online users often post facial images of themselves and other people on online social networks (OSNs) and other Web 2.0 platforms, which can lead to potential privacy leakage of people whose faces are included in such images. There is limited research on understanding face privacy in social media while considering user behavior. It is crucial to consider privacy of subjects and bystanders separately. This calls for the development of privacy-aware face detection classifiers that can distinguish between subjects and bystanders automatically. This paper introduces such a classifier trained on face-based features, which outperforms the two state-of-the-art methods with a significant margin (by 13.1% and 3.1% for OSN images, and by 17.9% and 5.9% for non-OSN images). We developed a semi-automated framework for conducting a large-scale analysis of the face privacy problem by using our novel bystander-subject classifier. We collected 27,800 images, each including at least one face, shared by 6,423 Twitter users. We then applied our framework to analyze this dataset thoroughly. Our analysis reveals eight key findings of different aspects of Twitter users' real-world behaviors on face privacy, and we provide quantitative and qualitative results to better explain these findings. We share the practical implications of our study to empower online platforms and users in addressing the face privacy problem efficiently.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2025
- arXiv:
- arXiv:2501.11756
- Bibcode:
- 2025arXiv250111756N
- Keywords:
-
- Computer Science - Human-Computer Interaction