Neural Contextual Reinforcement Framework for Logical Structure Language Generation
Abstract
The Neural Contextual Reinforcement Framework introduces an innovative approach to enhancing the logical coherence and structural consistency of text generated by large language models. Leveraging reinforcement learning principles, the framework integrates custom reward functions and dynamic context alignment mechanisms to address challenges inherent in maintaining long-range dependencies across extended sequences. The architecture incorporates multi-head attention layers and hierarchical encoding modules, enabling the model to produce outputs that align closely with human expectations of logical structure and semantic flow. Quantitative evaluations across diverse datasets demonstrate substantial improvements in coherence metrics, perplexity reduction, and semantic alignment, showcasing the framework's ability to outperform baseline models in both general and domain-specific tasks. Qualitative analyses further highlight the framework's capacity to generate text with improved narrative clarity and reduced redundancy, reflecting its effectiveness in balancing fluency with structural precision. In addition to its performance gains, the framework exhibits robustness in handling noisy input data and scalability across varying model sizes, reinforcing its versatility in practical applications. Experimental results reveal that optimal context window sizes significantly influence coherence outcomes, showing the importance of architectural flexibility in adapting to diverse linguistic structures. Cross-lingual performance evaluations affirm the framework's adaptability to multiple languages, extending its utility beyond monolingual contexts. Resource efficiency analyses indicate a reduction in computational overhead compared to traditional approaches, emphasizing the practicality of the framework for large-scale deployment.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2025
- arXiv:
- arXiv:2501.11417
- Bibcode:
- 2025arXiv250111417I
- Keywords:
-
- Computer Science - Computation and Language;
- Computer Science - Artificial Intelligence