Phase transitions for unique codings of fat Sierpinski gasket with multiple digits
Abstract
Given an integer $M\ge 1$ and $\beta\in(1, M+1)$, let $S_{\beta, M}$ be the fat Sierpinski gasket in $\mathbb R^2$ generated by the iterated function system $\left\{f_d(x)=\frac{x+d}{\beta}: d\in\Omega_M\right\}$, where $\Omega_M=\{(i,j)\in\mathbb Z_{\ge 0}^2: i+j\le M\}$. Then each $x\in S_{\beta, M}$ may represent as a series $x=\sum_{i=1}^\infty\frac{d_i}{\beta^i}=:\Pi_\beta((d_i))$, and the infinite sequence $(d_i)\in\Omega_M^{\mathbb N}$ is called a \emph{coding} of $x$. Since $\beta
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2025
- arXiv:
- arXiv:2501.11228
- Bibcode:
- 2025arXiv250111228C
- Keywords:
-
- Mathematics - Dynamical Systems;
- Mathematical Physics
- E-Print:
- 38 pages, 7 figures and 1 table