Advanced technology in railway track monitoring using the GPR Technique: A Review
Abstract
Subsurface evaluation of railway tracks is crucial for safe operation, as it allows for the early detection and remediation of potential structural weaknesses or defects that could lead to accidents or derailments. Ground Penetrating Radar (GPR) is an electromagnetic survey technique as advanced non-destructive technology (NDT) that can be used to monitor railway tracks. This technology is well-suited for railway applications due to the sub-layered composition of the track, which includes ties, ballast, sub-ballast, and subgrade regions. It can detect defects such as ballast pockets, fouled ballast, poor drainage, and subgrade settlement. The paper reviews recent works on advanced technology and interpretations of GPR data collected for different layers. Further, this paper demonstrates the current techniques for using synthetic modeling to calibrate real-world GPR data, enhancing accuracy in identifying subsurface features like ballast conditions and structural anomalies and applying various algorithms to refine GPR data analysis. These include Support Vector Machine (SVM) for classifying railway ballast types, Fuzzy C-means, and Generalized Regression Neural Networks for high-accuracy defect classification. Deep learning techniques, particularly Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) are also highlighted for their effectiveness in recognizing patterns associated with defects in GPR images. The article specifically focuses on the development of a Convolutional Recurrent Neural Network (CRNN) model, which combines CNN and RNN architectures for efficient processing of GPR data. This model demonstrates enhanced detection capabilities and faster processing compared to traditional object detection models like Faster R-CNN.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2025
- arXiv:
- arXiv:2501.11132
- Bibcode:
- 2025arXiv250111132K
- Keywords:
-
- Computer Science - Machine Learning;
- Computer Science - Computer Vision and Pattern Recognition;
- Electrical Engineering and Systems Science - Image and Video Processing
- E-Print:
- 2nd Canadian & Cold Regions Rail Research Conference 2024 (CCRC 2024)