Revisiting Rogers' Paradox in the Context of Human-AI Interaction
Abstract
Humans learn about the world, and how to act in the world, in many ways: from individually conducting experiments to observing and reproducing others' behavior. Different learning strategies come with different costs and likelihoods of successfully learning more about the world. The choice that any one individual makes of how to learn can have an impact on the collective understanding of a whole population if people learn from each other. Alan Rogers developed simulations of a population of agents to study these network phenomena where agents could individually or socially learn amidst a dynamic, uncertain world and uncovered a confusing result: the availability of cheap social learning yielded no benefit to population fitness over individual learning. This paradox spawned decades of work trying to understand and uncover factors that foster the relative benefit of social learning that centuries of human behavior suggest exists. What happens in such network models now that humans can socially learn from AI systems that are themselves socially learning from us? We revisit Rogers' Paradox in the context of human-AI interaction to probe a simplified network of humans and AI systems learning together about an uncertain world. We propose and examine the impact of several learning strategies on the quality of the equilibrium of a society's 'collective world model'. We consider strategies that can be undertaken by various stakeholders involved in a single human-AI interaction: human, AI model builder, and society or regulators around the interaction. We then consider possible negative feedback loops that may arise from humans learning socially from AI: that learning from the AI may impact our own ability to learn about the world. We close with open directions into studying networks of human and AI systems that can be explored in enriched versions of our simulation framework.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2025
- arXiv:
- arXiv:2501.10476
- Bibcode:
- 2025arXiv250110476C
- Keywords:
-
- Computer Science - Artificial Intelligence;
- Computer Science - Machine Learning
- E-Print:
- Pre-print