The Pop-Stack Operator on Ornamentation Lattices
Abstract
Each rooted plane tree $\mathsf{T}$ has an associated ornamentation lattice $\mathcal{O}(\mathsf{T})$. The ornamentation lattice of an $n$-element chain is the $n$-th Tamari lattice. We study the pop-stack operator $\mathsf{Pop}\colon\mathcal{O}(\mathsf{T})\to\mathcal{O}(\mathsf{T})$, which sends each element $\delta$ to the meet of the elements covered by or equal to $\delta$. We compute the maximum size of a forward orbit of $\mathsf{Pop}$ on $\mathcal{O}(\mathsf{T})$, generalizing a result of Defant for Tamari lattices. We also characterize the image of $\mathsf{Pop}$ on $\mathcal{O}(\mathsf{T})$, generalizing a result of Hong for Tamari lattices. For each integer $k\geq 0$, we provide necessary conditions for an element of $\mathcal{O}(\mathsf{T})$ to be in the image of $\mathsf{Pop}^k$. This allows us to completely characterize the image of $\mathsf{Pop}^k$ on a Tamari lattice.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2025
- DOI:
- arXiv:
- arXiv:2501.10311
- Bibcode:
- 2025arXiv250110311A
- Keywords:
-
- Mathematics - Combinatorics;
- 05A15;
- 06A07
- E-Print:
- 16 pages, 8 figures