On the number of cofinalities of cuts in ultraproducts of linear orders
Abstract
Suppose $\kappa$ is a regular cardinal and $\bar a=\langle \mu_i: i<\kappa \rangle$ is a non-decreasing sequence of regular cardinals. We study the set of possible cofinalities of cuts Pcut$(\bar a)=\{(\lambda_1, \lambda_2):$ for some ultrafilter $D$ on $\kappa$, $(\lambda_1, \lambda_2)$ is the cofinality of a cut of $\prod\limits_{i<\kappa} \mu_i / D \}$.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2025
- DOI:
- arXiv:
- arXiv:2501.10294
- Bibcode:
- 2025arXiv250110294G
- Keywords:
-
- Mathematics - Logic
- E-Print:
- Not intended for publication