Mixed anion control of enhanced negative thermal expansion in the oxysulfide of PbTiO3
Abstract
The rare physical property of negative thermal expansion (NTE) is intriguing because materials with large NTE over a wide temperature range can serve as high-performance thermal expansion compensators. However, applications of NTE are hindered by the fact that most of the available NTE materials show small magnitudes of NTE, and/or NTE occurs only in a narrow temperature range. Herein, for the first time, we investigated the effect of anion substitution instead of general Pb/Ti-site substitutions on the thermal expansion properties of a typical ferroelectric NTE material, PbTiO3. Intriguingly, the substitution of S for O in PbTiO3 further increases the tetragonality of PbTiO3. Consequently, an unusually enhanced NTE with an average volumetric coefficient of thermal expansion $\bar{\alpha}_V$ = -2.50 $\times$ 10$^{-5}$/K was achieved over a wide temperature range (300 -- 790 K), which is contrasted to that of pristine PbTiO3 ($\bar{\alpha}_V$ = -1.99 $\times$ 10$^{-5}$/K RT -- 763 K). The intensified NTE is attributed to the enhanced hybridization between Pb/Ti and O/S atoms by the substitution of S, as evidenced by our theoretical investigations. We therefore demonstrate a new technique for introducing mixed anions to achieve large NTE over a wide temperature range in PbTiO3-based ferroelectrics.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2025
- arXiv:
- arXiv:2501.09701
- Bibcode:
- 2025arXiv250109701P
- Keywords:
-
- Condensed Matter - Materials Science;
- Physics - Applied Physics
- E-Print:
- 14 pages, 4 figures