Redefining Affordance via Computational Rationality
Abstract
Affordances, a foundational concept in human-computer interaction and design, have traditionally been explained by direct-perception theories, which assume that individuals perceive action possibilities directly from the environment. However, these theories fall short of explaining how affordances are perceived, learned, refined, or misperceived, and how users choose between multiple affordances in dynamic contexts. This paper introduces a novel affordance theory grounded in Computational Rationality, positing that humans construct internal representations of the world based on bounded sensory inputs. Within these internal models, affordances are inferred through two core mechanisms: feature recognition and hypothetical motion trajectories. Our theory redefines affordance perception as a decision-making process, driven by two components: confidence (the perceived likelihood of successfully executing an action) and predicted utility (the expected value of the outcome). By balancing these factors, individuals make informed decisions about which actions to take. Our theory frames affordances perception as dynamic, continuously learned, and refined through reinforcement and feedback. We validate the theory via thought experiments and demonstrate its applicability across diverse types of affordances (e.g., physical, digital, social). Beyond clarifying and generalizing the understanding of affordances across contexts, our theory serves as a foundation for improving design communication and guiding the development of more adaptive and intuitive systems that evolve with user capabilities.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2025
- arXiv:
- arXiv:2501.09233
- Bibcode:
- 2025arXiv250109233L
- Keywords:
-
- Computer Science - Human-Computer Interaction
- E-Print:
- IUI 2025 Paper