XMM/HST monitoring of the ultra-soft highly accreting Narrow Line Seyfert 1 RBS 1332
Abstract
Ultra-soft narrow line Seyfert 1 (US-NLSy) are a poorly observed class of active galactic nuclei characterized by significant flux changes and an extreme soft X-ray excess. This peculiar spectral shape represents a golden opportunity to test whether the standard framework commonly adopted for modelling local AGN is still valid. We thus present the results on the joint XMM-Newton and HST monitoring campaign of the highly accreting US-NLSy RBS 1332. The optical-to-UV spectrum of RBS 1332 exhibits evidence of both a stratified narrow-line region and an ionized outflow, that produces absorption troughs over a wide range of velocities (from ~1500 km s-1 to ~1700 km s-1) in several high-ionization transitions (Lyalpha, N V, C IV). From a spectroscopic point of view, the optical/UV/FUV/X-rays emission of this source is due to the superposition of three distinct components which are best modelled in the context of the two-coronae framework in which the radiation of RBS 1332 can be ascribed to a standard outer disk, a warm Comptonization region and a soft coronal continuum. The present dataset is not compatible with a pure relativistic reflection scenario. Finally, the adoption of the novel model reXcor allowed us to determine that the soft X-ray excess in RBS 1332 is dominated by the emission of the optically thick and warm Comptonizing medium, and only marginal contribution is expected from relativistic reflection from a lamppost-like corona.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2025
- arXiv:
- arXiv:2501.09220
- Bibcode:
- 2025arXiv250109220M
- Keywords:
-
- Astrophysics - Astrophysics of Galaxies;
- Astrophysics - High Energy Astrophysical Phenomena
- E-Print:
- 13 pages, 9 figures, accepted in A&A