Exact convergence rate of spectral radius of complex Ginibre to Gumbel distribution
Abstract
Consider the complex Ginibre ensemble, whose eigenvalues are $(\lambda_i)_{1\le i\le n}$ and the spectral radius $R_n=\max_{1\le i\le n}|\lambda_i|.$ Set $X_n=\sqrt{4 \gamma_{n}}(R_{n}-\sqrt{n}-\frac12\sqrt{\gamma_{n}})$ and $F_n$ be its distribution function, where $\gamma_{n}=\log n-2\log(\sqrt{2\pi}\log n).$ It was proved in \cite{Rider 2003} that $F_n$ converges weakly to the Gumbel distribution $\Lambda.$ We prove in further in this paper that $$\lim_{n\to\infty} \frac{\log n}{\log\log n}\, W_1\left(F_n, \Lambda\right)=2$$ and the Berry-Esseen bound $$\lim\limits_{n\to \infty} \frac{\log n}{\log\log n}\sup_{x\in \mathbb{R}}|F_{n}(x)-e^{-e^{-x}}|=\frac{2}{e}.$$
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2025
- arXiv:
- arXiv:2501.08039
- Bibcode:
- 2025arXiv250108039M
- Keywords:
-
- Mathematics - Probability
- E-Print:
- 18 pp