Euclid: Optimising tomographic redshift binning for 3$\times$2pt power spectrum constraints on dark energy
Abstract
We present a simulation-based method to explore the optimum tomographic redshift binning strategy for 3x2pt analyses with Euclid, focusing on the expected configuration of its first major data release (DR1). To do this, we 1) simulate a Euclid-like observation and generate mock shear catalogues from multiple realisations of the 3x2pt fields on the sky, and 2) measure the 3x2pt Pseudo-Cl power spectra for a given tomographic configuration and derive the constraints that they place on the standard dark energy equation of state parameters (w0, wa). For a simulation including Gaussian-distributed photometric redshift uncertainty and shape noise under a LambdaCDM cosmology, we find that bins equipopulated with galaxies yield the best constraints on (w0, wa) for an analysis of the full 3x2pt signal, or the angular clustering component only. For the cosmic shear component, the optimum (w0, wa) constraints are achieved by bins equally spaced in fiducial comoving distance. However, the advantage with respect to alternative binning choices is only a few percent in the size of the $1\,\sigma\,$(w0, wa) contour, and we conclude that the cosmic shear is relatively insensitive to the binning methodology. We find that the information gain extracted on (w0, wa) for any 3x2pt component starts to saturate at $\gtrsim$ 7-8 bins. Any marginal gains resulting from a greater number of bins is likely to be limited by additional uncertainties present in a real measurement, and the increasing demand for accuracy of the covariance matrix. Finally, we consider a 5% contamination from catastrophic photometric redshift outliers and find that, if these errors are not mitigated in the analysis, the bias induced in the 3x2pt signal for 10 equipopulated bins results in dark energy constraints that are inconsistent with the fiducial LambdaCDM cosmology at $>5\,\sigma$.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2025
- DOI:
- arXiv:
- arXiv:2501.07559
- Bibcode:
- 2025arXiv250107559W
- Keywords:
-
- Astrophysics - Cosmology and Nongalactic Astrophysics
- E-Print:
- Euclid Consortium paper. 28 pages, 17 figures. For submission to A&