Noncommutative sharp dual Doob inequalities
Abstract
Let $(x_k)_{k=1}^n$ be positive elements in the noncommutative Lebesgue space $L_p(\mathcal{M})$, and let $(\mathcal{E}_k)_{k=1}^n$ be a sequence of conditional expectations with respect to an increasing subalgebras $(\mathcal{M}_n)_{k\geq1}$ of the finite von Neumann algebra $\mathcal{M}$. We establish the following sharp noncommutative dual Doob inequalities: \begin{equation*} \Big\| \sum_{k=1}^nx_k\Big\|_{L_p(\mathcal{M})}\leq \frac{1}{p} \Big\| \sum_{k=1}^n\mathcal{E}_k(x_k)\Big\|_{L_p(\mathcal{M})},\quad 0<p\leq 1, \end{equation*} and \begin{equation*} \Big\| \sum_{k=1}^n\mathcal{E}_k(x_k)\Big\|_{L_p(\mathcal{M})}\leq p\Big\| \sum_{k=1}^nx_k\Big\|_{L_p(\mathcal{M})},\quad 1\leq p\leq 2. \end{equation*} As applications, we obtain several noncommutative martingale inequalities with better constants.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2025
- DOI:
- arXiv:
- arXiv:2501.07064
- Bibcode:
- 2025arXiv250107064S
- Keywords:
-
- Mathematics - Operator Algebras;
- Mathematics - Functional Analysis