A New Flexible Train-Test Split Algorithm, an approach for choosing among the Hold-out, K-fold cross-validation, and Hold-out iteration
Abstract
Artificial Intelligent transformed industries, like engineering, medicine, finance. Predictive models use supervised learning, a vital Machine learning subset. Crucial for model evaluation, cross-validation includes re-substitution, hold-out, and K-fold. This study focuses on improving the accuracy of ML algorithms across three different datasets. To evaluate Hold-out, Hold-out with iteration, and K-fold Cross-Validation techniques, we created a flexible Python program. By modifying parameters like test size, Random State, and 'k' values, we were able to improve accuracy assessment. The outcomes demonstrate the Hold-out validation method's persistent superiority, particularly with a test size of 10%. With iterations and Random State settings, hold-out with iteration shows little accuracy variance. It suggests that there are variances according to algorithm, with Decision Tree doing best for Framingham and Naive Bayes and K Nearest Neighbors for COVID-19. Different datasets require different optimal K values in K-Fold Cross Validation, highlighting these considerations. This study challenges the universality of K values in K-Fold Cross Validation and suggests a 10% test size and 90% training size for better outcomes. It also emphasizes the contextual impact of dataset features, sample size, feature count, and selected methodologies. Researchers can adapt these codes for their dataset to obtain highest accuracy with specific evaluation.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2025
- arXiv:
- arXiv:2501.06492
- Bibcode:
- 2025arXiv250106492B
- Keywords:
-
- Computer Science - Machine Learning