Optimizing Supply Chain Networks with the Power of Graph Neural Networks
Abstract
Graph Neural Networks (GNNs) have emerged as transformative tools for modeling complex relational data, offering unprecedented capabilities in tasks like forecasting and optimization. This study investigates the application of GNNs to demand forecasting within supply chain networks using the SupplyGraph dataset, a benchmark for graph-based supply chain analysis. By leveraging advanced GNN methodologies, we enhance the accuracy of forecasting models, uncover latent dependencies, and address temporal complexities inherent in supply chain operations. Comparative analyses demonstrate that GNN-based models significantly outperform traditional approaches, including Multilayer Perceptrons (MLPs) and Graph Convolutional Networks (GCNs), particularly in single-node demand forecasting tasks. The integration of graph representation learning with temporal data highlights GNNs' potential to revolutionize predictive capabilities for inventory management, production scheduling, and logistics optimization. This work underscores the pivotal role of forecasting in supply chain management and provides a robust framework for advancing research and applications in this domain.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2025
- arXiv:
- arXiv:2501.06221
- Bibcode:
- 2025arXiv250106221C
- Keywords:
-
- Computer Science - Machine Learning;
- Economics - General Economics