Kolmogorov widths of an intersection of anisotropic finite-dimensional balls in $l_q^k$ for $1\le q\le 2$
Abstract
In this paper, order estimates for the Kolmogorov $n$-widths of an intersection of an arbitrary family of balls $\nu_\alpha B^{\overline{k}}_{\overline{p}_\alpha}$ in $l_q^k$ are obtained for $1\le q\le 2$, $n\le \frac k2$. Here $\overline{p}_\alpha = (p_{\alpha,1}, \, \dots, \, p_{\alpha,d})$, $\overline{k}=(k_1, \, \dots, \, k_d)$, $k=k_1\dots k_d$, $B^{\overline{k}}_{\overline{p}_\alpha}$ is the unit ball with respect to the anisotropic norm given by the vector $\overline{p}_\alpha$.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2025
- DOI:
- arXiv:
- arXiv:2501.05893
- Bibcode:
- 2025arXiv250105893V
- Keywords:
-
- Mathematics - Functional Analysis