Intelligent Sailing Model for Open Sea Navigation
Abstract
Autonomous vessels potentially enhance safety and reliability of seaborne trade. To facilitate the development of autonomous vessels, high-fidelity simulations are required to model realistic interactions with other vessels. However, modeling realistic interactive maritime traffic is challenging due to the unstructured environment, coarsely specified traffic rules, and largely varying vessel types. Currently, there is no standard for simulating interactive maritime environments in order to rigorously benchmark autonomous vessel algorithms. In this paper, we introduce the first intelligent sailing model (ISM), which simulates rule-compliant vessels for navigation on the open sea. An ISM vessel reacts to other traffic participants according to maritime traffic rules while at the same time solving a motion planning task characterized by waypoints. In particular, the ISM monitors the applicable rules, generates rule-compliant waypoints accordingly, and utilizes a model predictive control for tracking the waypoints. We evaluate the ISM in two environments: interactive traffic with only ISM vessels and mixed traffic where some vessel trajectories are from recorded real-world maritime traffic data or handcrafted for criticality. Our results show that simulations with many ISM vessels of different vessel types are rule-compliant and scalable. We tested 4,049 critical traffic scenarios. For interactive traffic with ISM vessels, no collisions occurred while goal-reaching rates of about 97 percent were achieved. We believe that our ISM can serve as a standard for challenging and realistic maritime traffic simulation to accelerate autonomous vessel development.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2025
- arXiv:
- arXiv:2501.04988
- Bibcode:
- 2025arXiv250104988K
- Keywords:
-
- Computer Science - Robotics