ActPC-Geom: Towards Scalable Online Neural-Symbolic Learning via Accelerating Active Predictive Coding with Information Geometry & Diverse Cognitive Mechanisms
Abstract
This paper introduces ActPC-Geom, an approach to accelerate Active Predictive Coding (ActPC) in neural networks by integrating information geometry, specifically using Wasserstein-metric-based methods for measure-dependent gradient flows. We propose replacing KL-divergence in ActPC's predictive error assessment with the Wasserstein metric, suggesting this may enhance network robustness. To make this computationally feasible, we present strategies including: (1) neural approximators for inverse measure-dependent Laplacians, (2) approximate kernel PCA embeddings for low-rank approximations feeding into these approximators, and (3) compositional hypervector embeddings derived from kPCA outputs, with algebra optimized for fuzzy FCA lattices learned through neural architectures analyzing network states. This results in an ActPC architecture capable of real-time online learning and integrating continuous (e.g., transformer-like or Hopfield-net-like) and discrete symbolic ActPC networks, including frameworks like OpenCog Hyperon or ActPC-Chem for algorithmic chemistry evolution. Shared probabilistic, concept-lattice, and hypervector models enable symbolic-subsymbolic integration. Key features include (1) compositional reasoning via hypervector embeddings in transformer-like architectures for tasks like commonsense reasoning, and (2) Hopfield-net dynamics enabling associative long-term memory and attractor-driven cognitive features. We outline how ActPC-Geom combines few-shot learning with online weight updates, enabling deliberative thinking and seamless symbolic-subsymbolic reasoning. Ideas from Galois connections are explored for efficient hybrid ActPC/ActPC-Chem processing. Finally, we propose a specialized HPC design optimized for real-time focused attention and deliberative reasoning tailored to ActPC-Geom's demands.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2025
- arXiv:
- arXiv:2501.04832
- Bibcode:
- 2025arXiv250104832G
- Keywords:
-
- Computer Science - Artificial Intelligence