Handling Incomplete Heterogeneous Data using a Data-Dependent Kernel
Abstract
Handling incomplete data in real-world applications is a critical challenge due to two key limitations of existing methods: (i) they are primarily designed for numeric data and struggle with categorical or heterogeneous/mixed datasets; (ii) they assume that data is missing completely at random, which is often not the case in practice -- in reality, data is missing in patterns, leading to biased results if these patterns are not accounted for. To address these two limitations, this paper presents a novel approach to handling missing values using the Probability Mass Similarity Kernel (PMK), a data-dependent kernel, which does not make any assumptions about data types and missing mechanisms. It eliminates the need for prior knowledge or extensive pre-processing steps and instead leverages the distribution of observed data. Our method unifies the representation of diverse data types by capturing more meaningful pairwise similarities and enhancing downstream performance. We evaluated our approach across over 10 datasets with numerical-only, categorical-only, and mixed features under different missing mechanisms and rates. Across both classification and clustering tasks, our approach consistently outperformed existing techniques, demonstrating its robustness and effectiveness in managing incomplete heterogeneous data.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2025
- arXiv:
- arXiv:2501.04300
- Bibcode:
- 2025arXiv250104300Z
- Keywords:
-
- Computer Science - Machine Learning