Cluster & Disperse: a general air conflict resolution heuristic using unsupervised learning
Abstract
We provide a general and malleable heuristic for the air conflict resolution problem. This heuristic is based on a new neighborhood structure for searching the solution space of trajectories and flight-levels. Using unsupervised learning, the core idea of our heuristic is to cluster the conflict points and disperse them in various flight levels. Our first algorithm is called Cluster & Disperse and in each iteration it assigns the most problematic flights in each cluster to another flight-level. In effect, we shuffle them between the flight-levels until we achieve a well-balanced configuration. The Cluster & Disperse algorithm then uses any horizontal plane conflict resolution algorithm as a subroutine to solve these well-balanced instances. Nevertheless, we develop a novel algorithm for the horizontal plane based on a similar idea. That is we cluster and disperse the conflict points spatially in the same flight level using the gradient descent and a social force. We use a novel maneuver making flights travel on an arc instead of a straight path which is based on the aviation routine of the Radius to Fix legs. Our algorithms can handle a high density of flights within a reasonable computation time. We put their performance in context with some notable algorithms from the literature. Being a general framework, a particular strength of the Cluster & Disperse is its malleability in allowing various constraints regarding the aircraft or the environment to be integrated with ease. This is in contrast to the models for instance based on mixed integer programming.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2025
- DOI:
- arXiv:
- arXiv:2501.04281
- Bibcode:
- 2025arXiv250104281G
- Keywords:
-
- Computer Science - Robotics;
- Computer Science - Machine Learning;
- Physics - Physics and Society