Exotic elliptic surfaces without 1-handles
Abstract
In this article, we consider a sufficient condition that a knot surgery or log-transformation of $E(n)$ admits a handle decomposition without 1-handles. We show that if $K$ is a knot that the bridge number is $b(K)\le 9n$, then the knot surgery $E(n)_K$ of an elliptic surface $E(n)$ admits a handle decomposition without 1-handles. Furthermore, we also show that the double log-transformation $E(n)_{2,q}$ admits a handle decomposition without 1-handles for any positive integer $n$ and any odd integer $q$.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2025
- DOI:
- arXiv:
- arXiv:2501.03935
- Bibcode:
- 2025arXiv250103935T
- Keywords:
-
- Mathematics - Geometric Topology;
- 57R65;
- 57R55
- E-Print:
- 11 pages, 11 figures. Comments welcome