Some zero-sum problems over $\langle x,y \mid x^2 = y^{n/2}, y^n = 1, yx = xy^s \rangle$
Abstract
Let $n \ge 8$ be even, and let $G = \langle x, y \mid x^2 = y^{n/2}, y^n = 1, yx = xy^s \rangle$, where $s^2 \equiv 1 \pmod n$ and $s \not\equiv \pm1 \pmod n$. In this paper, we provide the precise values of some zero-sum constants over $G$, namely the small Davenport constant, $\eta$-constant, Gao constant, and Erd\H os-Ginzburg-Ziv constant. In particular, the Gao's and Zhuang-Gao's Conjectures hold for $G$. We also solve the associated inverse problems when $n \equiv 0 \pmod 4$.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2025
- arXiv:
- arXiv:2501.03338
- Bibcode:
- 2025arXiv250103338R
- Keywords:
-
- Mathematics - Number Theory;
- Mathematics - Combinatorics
- E-Print:
- To appear in Bull. Braz. Math. Soc