Local derivation on some class of subspace lattice algebras
Abstract
Let $\mathcal{H}$ be a separable Hilbert space and $\mathcal{L}_{0}\subset B(\mathcal{H})$ a complete reflexive lattice. Let $\mathscr{K}$ be the direct sum of $n_0$ copies of $\mathcal{H}$ ($n_{0}\in\mathbb{N}$ and $n_0\geq 2$) or the direct sum of countably infinite many copies of $\mathcal{H}$ respectively. We construct two class of subspace lattices $\mathcal{L}$ on $\mathscr{K}$. Let $Alg\mathcal{L}$ be the corresponding subspace lattice algebra. We show that every local derivation from $Alg\mathcal{L} $ into $B(\mathscr{K})$ is a derivation.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2025
- DOI:
- arXiv:
- arXiv:2501.02463
- Bibcode:
- 2025arXiv250102463C
- Keywords:
-
- Mathematics - Operator Algebras;
- Mathematics - Functional Analysis;
- 47L75;
- 46L10