Multi-wavelength observations of a jet launch in real time from the post-changing-look Active Galaxy 1ES 1927+654
Abstract
We present results from a high cadence multi-wavelength observational campaign of the enigmatic changing look AGN 1ES 1927+654 from May 2022- April 2024, coincident with an unprecedented radio flare (an increase in flux by a factor of $\sim 60$ over a few months) and the emergence of a spatially resolved jet at $0.1-0.3$ pc scales (Meyer et al. 2024). Companion work has also detected a recurrent quasi-periodic oscillation (QPO) in the $2-10$ keV band with an increasing frequency ($1-2$ mHz) over the same period (Masterson et al., 2025). During this time, the soft X-rays ($0.3-2$ keV) monotonically increased by a factor of $\sim 8$, while the UV emission remained near-steady with $<30\%$ variation and the $2-10$ keV flux showed variation by a factor $\lesssim 2$. The weak variation of the $2-10$ keV X-ray emission and the stability of the UV emission suggest that the magnetic energy density and accretion rate are relatively unchanged, and that the jet could be launched due to a reconfiguration of the magnetic field (toroidal to poloidal) close to the black hole. Advecting poloidal flux onto the event horizon would trigger the Blandford-Znajek (BZ) mechanism, leading to the onset of the jet. The concurrent softening of the coronal slope (from $\Gamma= 2.70\pm 0.04$ to $\Gamma=3.27\pm 0.04$), the appearance of a QPO, and low coronal temperature ($kT_{e}=8_{-3}^{+8}$ keV) during the radio outburst suggest that the poloidal field reconfiguration can significantly impact coronal properties and thus influence jet dynamics. These extraordinary findings in real time are crucial for coronal and jet plasma studies, particularly as our results are independent of coronal geometry.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2025
- DOI:
- arXiv:
- arXiv:2501.02340
- Bibcode:
- 2025arXiv250102340L
- Keywords:
-
- Astrophysics - High Energy Astrophysical Phenomena;
- Astrophysics - Astrophysics of Galaxies;
- High Energy Physics - Phenomenology
- E-Print:
- Submitted to ApJ after minor referee comments