Stability estimates for critical points of a nonlocal Sobolev-type inequality
Abstract
In this paper, we consider the following nonlocal Soblev-type inequality \begin{equation*} C_{HLS}\big(\int_{\mathbb{R}^n}\big(|x|^{-\mu} \ast u^{p}\big)u^{p} dx\big)^{\frac{1}{p}}\leq\int_{\mathbb{R}^n}|\nabla u|^2 dx , \quad \forall~u\in D^{1,2}(\mathbb{R}^n), \end{equation*} induced by classical Sobolev inequality and Hardy-Littlewood-Sobolev inequality for $n\geq3$ and $\mu\in(0,n)$, where $p=\frac{2n-\mu}{n-2}$ is energy-critical exponent and $C_{HLS}$ is a dimension $n$ and parameter $\mu$ dependent constant which can be characterized by the following minimization problem $$\frac{1}{C_{HLS}}:=\inf\big\{\|\nabla u\|_{L^2}\big|u\in D^{1,2}(\mathbb{R}^n),\Big(\int_{\mathbb{R}^n}\big(|x|^{-\mu} \ast u^{p}\big)u^{p} dx\Big)^{\frac{1}{p}}=1\big\}.$$ and up to translation and scaling, $W(x)$, which is positive and radially symmetric, is a unique extremal function of the nonlocal Soblev inequality. It is well-known that, up to a suitable scaling, \begin{equation*} \Delta u+(|x|^{-\mu}\ast u^{p})u^{p-1}=0 \quad \mbox{in}\quad \mathbb{R}^n, \end{equation*} which is the Euler-Lagrange equation for the minimization problem. In this paper, we establish the quantitative stability estimates for critical point of the above nonlocal equation for $n\geq6-\mu$ with the parameter region $\mu\in(0,4)$.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2025
- DOI:
- arXiv:
- arXiv:2501.01927
- Bibcode:
- 2025arXiv250101927Y
- Keywords:
-
- Mathematics - Analysis of PDEs